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The Correspondence Analysis of Two-Mode Networks Revisited

• This paper revisits the use of Correspondence Analysis (CA) in analyzing two-mode network data, highlighting
its potential beyond data visualization.

• CA can compute a dual centrality score on both modes of a two-mode network, related to but not mathematically
equivalent to the Bonacich (1991) two-mode centrality.

• CA can extract latent positional information on people and groups, with similarities to recent work on generalized
relational similarity" in two-mode networks.
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A B S T R A C T
This paper reconsiders the use of Correspondence Analysis (CA) in analyzing two-mode network
data, highlighting aspects that have not been previously emphasized, going beyond the use of CA
as a visualization tool. It argues that CA can be used to compute a dual centrality score on both
modes, related to but not mathematically equivalent to the Bonacich (1991) two-mode centrality.
This “reflective” centrality score connects the use of CA in two-mode network analysis to its
use in other disciplines as a method of ordination. Additionally, I show CA can extract latent
positional information on people and groups, with similarities to recent work on “generalized
relational similarity" in two-mode networks. Thus, CA can be used for indirect community or
subgroup identification in two-mode networks, connecting to its use in some disciplines as a
clustering method. The paper demonstrates these applications of CA, comparing them with the
Bonacich dual centrality scores, and provides guidance on using CA for structural analysis in
network analysis.
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Correspondence Analysis of Two-Mode Networks

1. Introduction
While not particularly common, using Correspondence Analysis—hereafter CA—in analyzing two-mode network

data has had a somewhat rocky career in the social networks literature. Initially criticized by Borgatti and Everett (1997)
as a relatively limited and perhaps even inapplicable tool, CA has found various proponents who see it as an important
component of the SNA arsenal for two-mode network data analysis, particularly regarding its ability to economically
provide synoptic (e.g., “joint”) graphical representations of structural connectivity patterns across the two-modes
(Roberts Jr, 2000; Breiger, 2000; Faust, 2005), with the primary aim being to use CA—or its variants like Multiple
Correspondence Analysis (MCA)—to “visually explore” such networks (D’Esposito, De Stefano and Ragozini, 2014).
This paper contributes to the stream of previous work applying CA to analyze two-mode data. Nevertheless, it departs
from the already-mentioned previous efforts in highlighting aspects of CA for two-mode data analysis in SNA that
have not been emphasized or treated in detail before, moving beyond the focus on data visualization.

Particularly, I show that CA can be thought of as computing a kind of dual centrality score on both modes—one
related to but not mathematically equivalent to the Bonacich (1991) two-mode centrality—-an approach that, as noted
by van Dam, Dekker, Morales-Castilla, Rodríguez, Wichmann and Baudena (2021), has been recently re-invented in
some corners of network science under the guise of the “economic complexity index” (Hidalgo and Hausmann, 2009;
Mealy, Farmer and Teytelboym, 2019). With van Dam et al. (2021), I argue that this is a rather restricted interpretation
of a more general centrality score connecting the use of CA in two-mode network analysis to way CA features in
some disciplines also concerned with two-mode data (e.g., ecology) as a method of ordination—e.g., the discovery of
latent one-dimensional orderings among a set of entities. In social network analysis, this applies to conceptualizing the
venerable duality between people and the groups they join (Breiger, 1974).

In addition to its capacity to reveal latent ordinal structure in two-mode data, I also argue that CA can also be used
to extract latent positional information on people and groups. Particularly, there is a suggestive similarity between
the scores obtained from the first dimension of the CA of the two-mode affiliation matrix (the aforementioned dual
centrality score) and recent work on “generalized relational similarity” in two-mode networks (Kovács, 2010; Lizardo,
2024). As such, CA recovers clusters of entities (e.g., people) linked by their similar connectivity patterns to similar
entities in the other mode (e.g., groups). Thus, CA can be used as an approach to indirect “community” identification
in two-mode networks connecting to how CA is used in some disciplines (e.g., computer and information science) as
a clustering method (Zha, He, Ding, Simon and Gu, 2001), namely, the discovery of sociometrically similar subsets
of entities in affiliation networks. In this way, CA emerges as a tool central to the usual network-analytic tasks and not
just as a visualization or data-summarization tool.
1.1. Organization of the Paper

The rest of the paper is organized as follows. In the next section, I motivate the use of CA as producing a type
of Bonacich-style dual centrality via weighted iteration across the two modes of the affiliation matrix. This leads
naturally to an abbreviated way of computing the same scores via eigenvector decomposition of the (inverse degree-
weighted) one-mode projection of the affiliation matrix for each set of nodes. This approach is computationally and
mathematically related but not equivalent to the eigenvalue decomposition of the one-mode projection matrices, which
results in the usual Bonacich dual centrality scores. I then draw on recent work by van Dam et al. (2021) to show the
links between the ordering of nodes along the first CA dimension and Kovacs’s generalized relational similarity, and
the distance of nodes in the space formed by the first two dimensions and the connectivity-similarity between nodes
across modes. I contrast this ordering to that provided by the Bonacich dual centrality scores, which in contrast to
the CA ordering—which reveals a dual community partition— recovers the core-periphery structure of the two-mode
network instead. In closing, I provide some pointers on how CA can be used as a method for structural (e.g., centrality
and positional) analysis, independently of the usual emphasis on joint graphical displays and visual exploration.

2. Reflective Centralities in Two-Mode Networks
In a highly cited piece, Hidalgo and Hausmann (2009) motivated what they saw at the time as a novel way of ranking

nodes in a two-mode network—effectively computing a version of two-mode centrality—using what they called at the
time a “reflective” approach. Hidalgo and Hausmann’s original empirical application was to the two-mode country-by-
product networks, hence the original baptizing of their approach as one geared to extracting the “economic complexity”
of countries in the world system (and dually the complexity of given products). Subsequent work shows that there is
no logical connection between the formal method and this particular application since the approach proposed can be
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used to analyze any two-mode data matrix. As such, I introduce it here using the more intuitive—and classical from a
social network analysis perspective—case of the duality of persons and groups (Breiger, 1974).

If we are going to compute the centrality of nodes in a two-mode network, the most natural place to start is with
the good old degree centrality (Faust, 1997). A two-mode network composed of a set of people 𝑃 and their affiliation
relations to a set of groups 𝐺 can be represented by an affiliation matrix 𝐀 of dimensions |𝑃 | × |𝐺| with people along
the rows and groups across the columns, where |𝑃 | is the cardinality of the people set and |𝐺| is the cardinality of the
group set, with cell entries 𝑎𝑝𝑔 = 1 if person p is affiliated with group g and 𝑎𝑝𝑔 = 0 otherwise.

Given this, the degree-centrality of people is given by:

𝐶𝑅
𝑝 (1) =

∑

𝑔
𝑎𝑝𝑔 (1)

And for groups:

𝐶𝑅
𝑔 (1) =

∑

𝑝
𝑎𝑝𝑔 (2)

That is, the first-order centrality of people is the row sum of the entries in the affiliation matrix 𝐴, and the column
sums of the same matrix give the first-order centrality of groups. As noted by Hidalgo and Hausmann (2009), the key
to the reflective approach is the observation that, once we have these first-order quantities, it is possible to compute
“second-order centralities” 𝐶𝑅(2) for both people and groups using the (averaged) first-order centralities of the entities
in the other mode they are connected to.

For people, these are given by:

𝐶𝑅
𝑝 (2) =

1
𝐶𝑅
𝑝 (1)

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (1) (3)

And for groups:

𝐶𝑅
𝑔 (2) =

1
𝐶𝑅
𝑔 (1)

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (1) (4)

Equation 3 says “people are more central when the average sum of the size of the groups they belong to is large”
(e.g., whenever 𝑎𝑝𝑔 = 1 and 𝐶𝑅

𝑔 (1) is a big number). Equation 4 says “groups are more central when the average
activity of their members is large” (e.g., whenever 𝑎𝑝𝑔 = 1 and 𝐶𝑅

𝑝 (1) is a big number). Of course, we can keep on
going and define third-order reflections.

For the people, these are given by:

𝐶𝑅
𝑝 (3) =

1
𝐶𝑅
𝑝 (1)

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (2) (5)

And for groups:

𝐶𝑅
𝑔 (3) =

1
𝐶𝑅
𝑔 (1)

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (2) (6)

Equation 5 says something like “people are more central when the average sum of the average activity of the
members of the groups they belong to is large” (e.g., 𝑎𝑝𝑔 = 1 and 𝐶𝑅

𝑔 (2) is a big number). Equation 6 says, ”groups are
more central when the average sum of the average size of the groups their members belong to is large.” (e.g., 𝑎𝑝𝑔 = 1
and 𝐶𝑅

𝑝 (2) is a big number).
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Table 1
Southern Women Data.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
EVELYN 1 1 1 1 1 1 0 1 1 0 0 0 0 0
LAURA 1 1 1 0 1 1 1 1 0 0 0 0 0 0
THERESA 0 1 1 1 1 1 1 1 1 0 0 0 0 0
BRENDA 1 0 1 1 1 1 1 1 0 0 0 0 0 0
CHARLOTTE 0 0 1 1 1 0 1 0 0 0 0 0 0 0
FRANCES 0 0 1 1 1 1 0 1 0 0 0 0 0 0
ELEANOR 0 0 0 1 1 1 1 1 0 0 0 0 0 0
RUTH 0 0 0 1 1 0 1 1 1 0 0 0 0 0
VERNE 0 0 0 0 0 0 1 1 1 0 0 1 0 0
MYRA 0 0 0 0 0 0 0 1 1 1 0 1 0 0
KATHERINE 0 0 0 0 0 0 0 1 1 1 0 1 1 1
SYLVIA 0 0 0 0 0 0 1 1 1 1 0 1 1 1
NORA 0 0 0 0 0 0 1 0 1 1 1 1 1 1
HELEN 0 0 0 0 0 0 1 1 0 1 1 1 0 0
OLIVIA 0 0 0 0 0 0 0 0 1 0 1 0 0 0
FLORA 0 0 0 0 0 0 0 0 1 0 1 0 0 0
PEARL 0 0 0 0 0 1 0 1 1 0 0 0 0 0
DOROTHY 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Note: Rows ordered according to the generalized blockmodeling solution of Doreian et al. (2004, Table 4).

Note that for the people, the even-numbered reflection 𝐶𝑅
𝑝 (2) assigns centrality based on a formal feature of the

groups they belong to (in this case, the group sizes). On the other hand, the odd-numbered reflection 𝐶𝑅
𝑝 (3) assigns

centrality based on a formal feature of the members of the groups they belong to (in this case, the average size of the
groups they belong to). In the same way, for the groups, the even-numbered reflection 𝐶𝑅

𝑔 (2) assigns centrality based
on a formal feature of the people who belong to them (in this case, their activity). On the other hand, the odd-numbered
reflection 𝐶𝑅

𝑔 (3) assigns centrality based on a formal feature of the other groups their members belong to (in this case,
their average group size). While these are distinct metrics, in practice, the ordering of the nodes in each mode ends up
being identical across even and odd centralities after the ranks “freeze” past a given number of iterations (proportional
to the network size).

More generally, Hidalgo and Hausmann (2009) show that we can define a series of reflective quantities for people
and groups (whose verbal and substantive interpretation becomes more complex as the number of iterations increases).

For people, these are given by:

𝐶𝑅
𝑝 (𝑞) =

1
𝐶𝑅
𝑝 (1)

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (𝑞 − 1) (7)

And for groups:

𝐶𝑅
𝑔 (𝑞) =

1
𝐶𝑅
𝑔 (1)

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (𝑞 − 1) (8)

Equation 7 says that the reflective centrality of a person p at iteration q is the sum of the 𝑞 − 1 centralities of
the groups they belong to (𝐶𝑅

𝑔 (𝑞 − 1)) divided by their number of memberships 𝐶𝑅
𝑝 (1). Equation 8 says that the 𝑞𝑡ℎ

group reflective centrality is the sum of 𝑞 −1 centralities 𝐶𝑅
𝑝 (𝑞 −1) of their members, divided by the number of group

members 𝐶𝑅
𝑔 (1).

2.1. Empirical Example
Figure 1a shows the trajectory of the HH reflective centralities for persons in the Southern Women data (Davis,

Gardner and Gardner, 1941), using a bump chart to plot the rank order trajectory of persons across reflections. The
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rank order of people and groups in the 𝑞𝑡ℎ centrality is plotted on the y-axis, and the centrality iteration 𝑞 is plotted on
the x-axis. As the figure shows, 𝑁𝑂𝑅𝐴, 𝐹𝐿𝑂𝑅𝐴, 𝐶𝐻𝐴𝑅𝐿𝑂𝑇𝑇𝐸, and 𝐸𝑉 𝐸𝐿𝑌𝑁 are the top-ranked actors when
it comes to 𝐶𝑅

𝑝 (2): The average number of members of the groups they belong to. However, their fates in this reflective
metric diverge at higher reflections, with 𝑁𝑂𝑅𝐴 and 𝐹𝐿𝑂𝑅𝐴 maintaining their top positions but 𝐶𝐻𝐴𝑅𝐿𝑂𝑇𝑇𝐸
and 𝐸𝑉 𝐸𝐿𝑌𝑁 tumbling down the ranks, suggesting that the members of the groups they belong to affiliate with
smaller groups than the members of the groups 𝑁𝑂𝑅𝐴 and 𝐹𝐿𝑂𝑅𝐴 belong to (and so on for higher reflections).
Notably, the reflective centrality rankings after freezing (𝑞 ≥ 18) recover the Doreian et al. (2004) block partition (see
Table 1), but this time with Dorothy and Pearl in the middle separating the two largest blocks of women.

Figure 1b shows the corresponding bump chart for the events. Just like for these actors, the equilibrium reflective
centralities recover the ordering of the columns according to Doreian et al. generalized blockmodel with events 1-6
separated from events 10-15 by events 7-9 (see also Kovács (2010)). Clearly, 𝐸14 experiences the most dramatic
improvement in status as we move to higher reflections. Relatively low ranked when it comes to the average number
of memberships of its members, it increases in standing when considering the average of the average number of
memberships of its members (and so forth).

(a) Reflective centrality trajectories of persons. (b) Reflective centrality trajectories of groups.

Figure 1: Reflective centralities for persons and groups (even reflections)

3. Correspondence Analysis, Dual Centrality, and Communities in Two-Mode Networks
The reader may ask what the point of going through all these reflective centralities, since Bonacich (1991) already

developed a dual conception of centrality in two-mode networks based on a very similar idea: Define the centralities of
entities in one mode based on the centralities of entities in the other mode to which they are connected. In that paper,
Bonacich also considered CA in passing but dismissed its application to centrality rankings. Instead, Bonacich noted
that, in analyzing the Southern Women data shown in Table 1, “[r]ather than centrality, what they [CA scores] seem
to capture is membership in the two cliques that attended two different sets of events” (1991, 164).

As we will see, Bonacich was only half right. Indeed, the CA scores capture a version of “clique” (more accurately,
community) membership, but they—particularly the first dimension—also capture a version of centrality in the most
general sense of ranking nodes based on a meaningful criterion (Borgatti and Everett, 2006). In fact, they capture the
limit (𝑞 → ∞) of the reflective centralities discussed in the previous section (Mealy et al., 2019).

To see this, recall that the solutions to the following system of linear equations give the Bonacich (𝐶𝐵) two-mode
centralities:
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𝐴𝐶𝐵
𝑝 = 𝜆𝐶𝐵

𝑔 (9)

𝐴𝑇𝐶𝐵
𝑔 = 𝜆𝐶𝐵

𝑝 (10)
Where 𝐴 is the original affiliation matrix. Equations 9 and 10 have the typical form of a linear eigensystem, which

means the unknown 𝐶𝐵
𝑔 and 𝐶𝐵

𝑝 scores can be obtained from the row and column eigenvectors corresponding to the
largest eigenvalue 𝜆, obtained from the singular value decomposition (SVD) of the rectangular affiliation matrix 𝐴.
Importantly, as Faust (1997, 170) notes, it is possible to express Equations 9 and 10 in terms of person and group-
specific centralities.

For people, these are given by:

𝐶𝐵
𝑝 = 1

𝜆
∑

𝑔
𝑎𝑝𝑔𝐶

𝐵
𝑔 (11)

And for groups:

𝐶𝐵
𝑔 = 1

𝜆
∑

𝑝
𝑎𝑝𝑔𝐶

𝐵
𝑝 (12)

Where 𝜆 is the (first) eigenvalue corresponding to the eigenvector containing the 𝐶𝐵
𝑝 scores. These equations make

clear that in the Bonacich two-mode, the centrality of people is proportional to the centralities of the groups they join,
and the centrality of groups is proportional to the centralities of their members. These capture the duality property
since the centralities of nodes in each mode are given by aggregating their connections to nodes in the other mode.
Note the formal similarity between equations 11 and 12 and equations 7 and 8. The main difference is that in the
reflective equations, a person’s centrality is proportional to the activity-weighted centralities of the groups they join,
and a group’s centrality is proportional to the group size weighted centrality of the people who are members. We will
return to this crucial point later.
3.1. The Bonacich Two-Mode Centrality as a Reflective Centrality

To see the connection between the reflective and Bonacich two-mode centralities more clearly, we can motivate the
Bonacich two-mode centrality using the same “reflective” approach we used to introduce the HH reflective centrality
in Section 2. Admittedly, this is a somewhat unorthodox way of presenting the eigenvector centrality for two-mode
networks (Bonacich, 1991), but it will help clarify the similarities and differences between the HH and the Bonacich
approaches. Accordingly, starting with Equations 1 and 2, we can define a second-order “Bonacich-reflection” on both
the persons and groups using the formulas:

𝐶𝐵
𝑝 (2) =

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (1) (13)

𝐶𝐵
𝑔 (2) =

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (1) (14)

Equation 13 says that people are central when the sum of the number of members of the groups they belong to is
large. Equation 14 says groups are central when the sum of the number of memberships of the people who belong to
them is large.

As before, we can keep on going and define a third-order reflection using the formulas:

𝐶𝐵
𝑝 (3) =

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (2) (15)
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𝐶𝐵
𝑔 (3) =

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (2) (16)

Equation 15 says that people are central when the sum of the sum of the number of memberships held by the people
who belong to the groups they belong to is large. Equation 16 says that groups are central when the sum of the sum
of the number of members of the groups their members belong to is large. Once again, we can keep going and define
fourth order, fifth order, and higher reflections 𝐶𝑅

𝑝 (4), 𝐶
𝑅
𝑝 (4)…𝐶𝑅

𝑝 (𝑞), where the centralities of nodes in one mode are
based on the sums, of the sums, of the sums, of the centralities of nodes in the other mode.

More generally, and in parallel with equations 7 and 8, the reflective Bonacich centralities for persons and groups
are given by:

𝐶𝐵
𝑝 (𝑞) =

∑

𝑔
𝑎𝑝𝑔𝐶

𝑅
𝑔 (𝑞 − 1) (17)

𝐶𝐵
𝑔 (𝑞) =

∑

𝑝
𝑎𝑝𝑔𝐶

𝑅
𝑝 (𝑞 − 1) (18)

This just says that the Bonacich reflective centrality at step 𝑞 is just the sum of the group centralities at step 𝑞 − 1
(for people) and the sum of the person centralities at step 𝑞 − 1 (for groups).

Of course, it is evident that these sum of sums would diverge to a bigger and bigger quantity at each step 𝑞. To
prevent this and guarantee convergence, we normalize the vector of reflective Bonacich centralities for persons and
groups at each step 𝑞 > 1 before calculating the subsequent sum at step 𝑞 + 1 as follows:

𝐶𝐵
𝑝 (𝑞) =

𝐶𝐵
𝑝 (𝑞)

||𝐶𝐵
𝑝 (𝑞)||2

(19)

𝐶𝐵
𝑔 (𝑞) =

𝐶𝐵
𝑔 (𝑞)

||𝐶𝐵
𝑔 (𝑞)||2

(20)

Where the denominator in 19 and 20 is the Euclidean vector norm.1 The normalization will prevent divergence
of the sum of centralities for persons and groups, formalizing the weaker assumption of proportionality between the
centrality of each set of nodes and the sum of the centralities of the nodes in the other mode to which they are connected
rather than the stronger assumption of strict equivalence (Bonacich and Lloyd, 2001).

Furthermore, the normalization guarantees convergence and the “freezing” of the sums of sums around steady
values after a few iterations. These values will be equivalent (up to rounding error) to the (absolute value) of the
dominant row and column eigenvectors of 𝐀 as given in 9 and 10.2 In fact, the iterative (normalized sum of sums)
approach is one way of computing the leading eigenvectors of a rectangular matrix (e.g., the “power” method of Mises
and Pollaczek-Geiringer (1929)).

This exercise establishes that there is more than a superficial similarity between the HH “reflective” centralities
and the Bonacich two-mode centralities. In fact, both can be seen as instantiating an underlying reflective model of
how centrality is distributed in the two-mode network, with the Bonacich approach presuming that centrality points
are distributed equally across nodes in each mode regardless of their own centrality (both large and small degree nodes
distribute the same “amount” of centrality to others) and the HH reflective approach normalizing by the centrality of
nodes in each mode, so that nodes distribute a given centrality quantum that is proportional to their first-order degree
centrality, with large degree nodes having less centrality to distribute than low degree nodes.

1For any vector 𝐱 of length 𝑛, the 𝐿2 norm is given by: ||𝐱||2 =
√

∑𝑛
𝑖 𝑥

2
𝑖 .

2Note that dividing by any vector norm—e.g., the 𝐿1 or max norm—will prevent divergence and return scores perfectly correlated to the
Bonacich eigenvector approach. Dividing by the 𝐿2 norm returns scores that are exactly the same, save for rounding error, as the absolute value of
the dominant left and right eigenvectors of the affiliation matrix.
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3.2. HH Reflective Centrality as an Eigenvector Centrality
Since iterating through normalized sums of sums is one way of obtaining the Bonacich two-mode centralities, it

would be surprising if the equilibrium values of the HH reflective iterations were not themselves the solution to some
eigenvalue decomposition problem. As has been noted recently by Mealy et al. (2019) and van Dam et al. (2021),
the Hidalgo and Hausmann’s (2009) reflective centralities can indeed be obtained directly (without iterations) as the
solution to an eigenvalue decomposition problem.

To see this, recall that, as Bonacich (1991, 157) notes, we can solve for 𝐶𝐵
𝑔 in 10 and 𝐶𝐵

𝑝 in 9 and substitute the
respective solutions into 9 and 10. Matrix-algebraic reduction of the resulting equations would show that the Bonacich
dual centralities can also be obtained as solutions to the eigensystem:

(

𝐴𝐴𝑇 )𝐶𝐵
𝑝 = 𝜆2𝐶𝐵

𝑝 (21)

(

𝐴𝑇𝐴
)

𝐶𝐵
𝑔 = 𝜆2𝐶𝐵

𝑔 (22)
This shows that the dual centrality Bonacich scores for persons and groups are equivalent to the eigenvectors of

the respective one-mode projection matrices corresponding to the first (largest) eigenvalue.
Now, consider the |𝑃 |×|𝑃 | matrix 𝐷𝑝, which contains the “first order” reflective centralities of each person 𝐶𝑅(1)𝑝(activity) along the diagonals and zeroes in every other cell. In the same way, consider the |𝐺|× |𝐺| matrix 𝐷𝑔, which

contains the “first order” (degree) centralities of each group 𝐶𝑅(1)𝑔 (size) along the diagonals and zeroes in every
other cell. It can be shown (van Dam et al., 2021), that in the limit (𝑞 → ∞), the iterative HH reflective centralities can
be obtained as the solution of the eigensystem:

(

𝐷𝑝−1𝐴𝐷𝑔−1𝐴𝑇 )𝐶𝑅
𝑝 = 𝜆𝐶𝑅

𝑝 (23)

(

𝐷𝑔−1𝐴𝑇𝐷𝑝−1𝐴
)

𝐶𝑅
𝑔 = 𝜆𝐶𝑅

𝑔 (24)
Note the formal similarity (and key differences) between these equations and the Bonacich two-mode centralities

in equations 21 and 22. Both extract individual and group centralities as eigenvectors of the one-mode projection of
the original affiliation matrix: 𝐴𝐴𝑇 for people and 𝐴𝑇𝐴 for groups. The difference is that the reflective centralities
pre-multiply the affiliation matrix and its transpose by the inverse of the first-order centralities of the nodes in each
mode before computing the eigenvalue decomposition, essentially normalizing the one-mode projection by the degrees
of both sets of nodes.

This can be clearly seen if we express (𝐷𝑔−1𝐴𝑇𝐷𝑝−1𝐴
) in 23 in terms of each cell entry (Mealy et al., 2019, eq.

4):

𝑎𝑝𝑝′ =
∑

𝑔

𝑎𝑝𝑔𝑎𝑝′𝑔
𝐶𝑅
𝑝 (1)𝐶𝑅

𝑔 (1)
= 1

𝐶𝑅
𝑝

∑

𝑔

𝑎𝑝𝑔𝑎𝑝′𝑔
𝐶𝑅
𝑔 (1)

(25)

In equation 25, the numerator is equal to one when person 𝑝 and person 𝑝′ share membership in a group 𝑔. Summed
across groups, this gives the number of memberships that 𝑝 and 𝑝′ have in common (Breiger, 1974). As noted, the
Bonacich dual centralities are obtained from the eigenvector corresponding to the first eigenvalue of this matrix of
shared memberships (for people) and shared people (for groups). The reflective centralities, on the other hand, are
given by the eigenvectors of a weighted version of the same matrix, where the weights are the sizes of each of the
groups 𝑝 shares with each other person summed across groups and divided by the total number of 𝑝’s memberships.

The same reasoning applies to groups in 24, whose entries are given by:

𝑎𝑔𝑔′ =
∑

𝑝

𝑎𝑝𝑔𝑎𝑝𝑔′
𝐶𝑅
𝑝 (1)𝐶𝑅

𝑔 (1)
= 1

𝐶𝑅
𝑔

∑

𝑝

𝑎𝑝𝑔𝑎𝑝𝑔′
𝐶𝑅
𝑝 (1)

(26)
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(a) CA/Reflection Correlation (Persons). (b) CA/Reflection Correlation (Groups)
Figure 2: Scatter plot of the scores computed by the method of reflections (𝑞 = 26) on the y-axis and the first dimension
of the Correspondence Analysis of the two-mode affiliation matrix on the x-axis, for both persons (a) and groups (b).

Now, as has been noted by two-mode data analysts in other contexts (e.g., Faust, 2005) it turns out that this “double-
pre-weighting” of each cell entry by the degrees of each mode (e.g., the row and column sums of the original affiliation
matrix) is precisely that used for the CA of a two-mode matrix.3 And indeed, the limit reflective centralities obtained
from equations 23 and 24—which will be given by the eigenvectors corresponding to the second largest eigenvalue of
the resulting solution—will be equivalent to the row and column scores corresponding to the first non-trivial dimension
(for people and groups respectively) obtained from a simple CA of the original affiliation matrix (Fouss, Saerens and
Shimbo, 2016, 398, eq. 9.17).4 In fact, the method of “reflections” is just a re-discovery of the older idea of reciprocal
averaging (Hill, 1973), which is yet another way of computing row and column scores for elements in a two-mode
matrix that are substantively equivalent to those obtained by (the first non-trivial dimension of) CA (Mealy et al.,
2019). As we can see in Figure 2, the scores computed via the iterative method of reflections (𝑞 = 26) correspond
exactly (𝑟 = 1.0) to those obtained from the first dimension of the simple CA of the affiliation matrix for both the row
and column objects.

Degree-pre-weighting does not radically alter the nature of the data. Indeed, it corresponds to moving from sums to
averages, thus “adjusting” for the influence of person-activity and group size—a seemingly perennial issue in two-mode
data analysis (Bonacich, 1991, 159ff). This can be seen by the fact that Equations 25 and 26 show that, substantively,
what the degree pre-weighting does is that, for people, co-memberships count for more in determining interpersonal
similarity when the group in question is small than when it is large. On the group side, shared members who do not
have many affiliations count more in determining intergroup similarity than those with many affiliations.

Accordingly, it would make no sense to call the Bonacich scores 𝐶𝐵
𝑝 and 𝐶𝐵

𝑔 from equations 21 and 22 “centrality
scores” but fail to hold that designation from 𝐶𝑅

𝑝 and 𝐶𝑅
𝑔 , given that the mathematics are not only “similar” (Bonacich,

1991, 162) but formally identical. In the Bonacich case, an eigendecomposition of the one-mode projection of the
two-mode network; in the reflective case, an eigendecomposition of the degree-weighted one-mode projection of the
same network. Accordingly, the CA of a two-mode network will return—along the first dimension—a rank-ordered
score for nodes in each mode that meets all the conditions for qualifying as a centrality measure for two-mode networks.
Particularly, the CA centrality retains the duality property (Faust, 2005, 128), as the (average) centrality of people is

3More accurately, cells are weighted by the inverse of the square root of the product of the row, and column sums (e.g., Faust, 2005, 124).
4As Faust (2005, 126) notes, the first non-trivial CA dimension is also given by the eigenvector corresponding to the second-largest eigenvalue

of 𝐷−1∕2
𝑝 𝐴𝐷−1∕2

𝑔 .
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a function of the (average) centrality of the groups they belong to. The (average) centrality of groups, in turn, is a
function of their members’ (average) centrality. The person and group score ranks given by the first CA dimension are
thus better thought of as activity and group-size normalized versions of the familiar Bonacich (1991) dual centralities
for two-mode networks.

(a) Re-ordered Affiliation matrix (CA). (b) Re-ordered Affiliation matrix (Bonacich).
Figure 3: Southern Women Affiliation matrix with re-ordered rows and columns: (a) row and columns re-ordered according
to the person and group score on the first CA dimension, (b) row and columns re-ordered according to person and group
Eigenvector centrality score.

4. Illustrative Analysis of the Southern Women Data
4.1. Row and Column Re-ordered Affiliation Matrices

Figures 3(a) and 3(b) illustrate the key differences between the two versions of dual centrality 𝐶𝑅 and 𝐶𝐵 . Each
panel shows the original Southern Women affiliation matrix but with rows and columns re-ordered according to the
first CA dimension in (a) and the Bonacich (1991) centrality in (b). In the plot, a cell entry is colored red if it has
a one in the original affiliation matrix and is white when the corresponding entry is zero. As we can see, the two
row-column-reshuffled matrices have appreciably distinct structures, with the 𝐶𝑅 re-ordered affiliation matrix having
a block-diagonal structure and the 𝐶𝐵 re-ordered affiliation matrix having a triangular structure. Accordingly, the 𝐶𝑅

centrality rankings reveal a dual community partition between groups of women who selectively attend two groups
of events (on the top-right and bottom-left of the plot). The traditional eigenvector centrality re-ordering, on the other
hand, reveals a classic core-periphery partitioning (Borgatti and Everett, 2000), with a group of highly active women
(on the top-left) who selectively co-participate in highly attended events (on the top right-hand side of the plot) and less
active women (in the bottom half) who go to less well-attended events (on the left side). The two centralities extract
qualitatively different information from the two-mode network, with 𝐶𝑅 geared toward community partitioning and
𝐶𝐵 more focused on finding a core of well-connected people and groups.
4.2. Eigenvector Plot

We can confirm that the first CA axis points toward the underlying community partitioning of the two-mode network
by looking at Figure 4(a) and 4(c), which shows the 𝐶𝑅 score of persons and groups on the x-axis against the score’s
rank order on the y-axis. If a two-mode network has no discernible community structure, the first dimension CA
scores would be distributed as a continuous logistic curve; when community structure is present, we should observe
discernible breaks in this distribution (van Dam et al., 2021). The Southern Women data clearly belong to the second
category. In the people mode, we have [𝐹𝑟𝑎𝑛𝑐𝑒𝑠, 𝐿𝑎𝑢𝑟𝑎, 𝐵𝑟𝑒𝑛𝑑𝑎, 𝐶ℎ𝑎𝑟𝑙𝑜𝑡𝑡𝑒, 𝐸𝑣𝑒𝑛𝑙𝑦, 𝑇 ℎ𝑒𝑟𝑒𝑠𝑎, 𝐸𝑙𝑎𝑛𝑜𝑟, 𝑅𝑢𝑡ℎ, 𝑃 𝑒𝑎𝑟𝑙]
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(a) Eigenvector plot (Persons). (b) Eigenvector plot (Groups).
Figure 4: CA Eigenvector plot for persons (a) and groups (b). The first CA score is on the x-axis, and the rank order of
persons and groups is on the y-axis. Insets show the eigenvalue orderings on the x-axis (𝑘) for persons and groups.

on one side, [𝐷𝑜𝑟𝑜𝑡ℎ𝑦,𝑁𝑜𝑟𝑎,𝐾𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑒, 𝑆𝑦𝑙𝑣𝑖𝑎, 𝐹 𝑙𝑜𝑟𝑎, 𝑂𝑙𝑖𝑣𝑖𝑎,𝑀𝑦𝑟𝑎,𝐻𝑒𝑙𝑒𝑛, 𝑉 𝑒𝑟𝑛𝑒] on the other. Among events,
we have [𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6] on side [𝐸9, 𝐸10, 𝐸11, 𝐸12, 𝐸13, 𝐸14] on the other and [𝐸7, 𝐸8] in an ambiguous
middle position. Note that this is roughly the same partitioning obtained by (Doreian, Batagelj and Ferligoj, 2004) and
reproduced by Kovács (2010) and Lizardo (2024) using a generalized relational similarity approach. This indicates
that persons and groups receive similar scores in the first dimension of CA only when they have similar connectivity
similar to similar groups, where group similarity is defined dually as having members in common who are themselves
similar.
4.3. Normalized Similarity Plot

To further appreciate the links between CA, reflective centralities, and community partitioning in two-mode
networks, note that 𝑆𝑝 = 𝐴𝐷𝑔−1𝐴𝑇 in 23 can be thought of as giving the similarity between pairs of people weighted
by the size of the groups they belong to (so that people are more similar when they share smaller memberships).5 The
same interpretation can be given to 𝑆𝑔 = 𝐴𝑇𝐷𝑝−1𝐴 in 24, which is the similarity of groups weighted by the activity
of the people in them (so that groups are more similar when they share members who do not belong to many other
groups). As van Dam et al. (2021) show, the eigenvectors corresponding to (the Laplacian6 of) these similarity matrices
are equivalent to 𝐶𝑅. This means that the relative spread of the eigenvalues of the degree-weighted similarity matrix
provides information concerning the quality of the resulting community partition. These are shown as inset plots in
Figure 4 for both people and groups. Note that in both cases, the first two eigenvalues separate from the rest, strongly
indicating a dual-community structure in the Southern Women two-mode network.

To fix the intuition, the top-left panel (a) of Figure 5 shows a heatmap representation of the group-size weighted
similarity matrix 𝑆𝑝 (for people); the top-right panel (b) shows the same plot for the activity-weighted similarity
matrix 𝑆𝑔 (for groups). In both figures, darker squares indicate more similar node pairs, and closer to white indicate
less similarity. Moreover, the rows of each matrix are sorted according to 𝐶𝑅 for both people and groups. As we can

5Note that Newman (2001, eq.2) proposes a slightly modified version of this two-mode similarity score for people—in Newman’s case,
scientists—except that the one mode projection is normalized as 𝐴(𝐷𝑔 − 𝐼)−1𝐴𝑇 ; namely, the size of the “group”—the number of co-authors
on a scientific paper—minus one. Substantively, this is unlikely to make much difference as the rank order of dyads by similarity between the two
scores will be identical.

6For the similarity matrix 𝑆, the Laplacian is defined as 𝐷 − 𝑆 where 𝐷 is the matrix containing the degrees of either people or groups in the
diagonal and zeroes in every other cell.

First Author et al.: Preprint submitted to Elsevier Page 11 of 16



Correspondence Analysis of Two-Mode Networks

see, for both people and groups, the re-ordered matrix recovers maximally similar communities of nodes, where the
similarity is based on their shared (degree-weighted) connections to entities in the other mode.
4.4. CA Correspondence Plot

The bottom panel of Figure 5 shows the usual correspondence plot of the first two CA dimensions. People
and groups are colored according to a six-cluster k-means solution based on the first nine eigenvectors of their
respective similarity matrices. The plot reveals that the distances between nodes in the standard correspondence plot—
usually taken to be a low-dimensional representation of the original affiliation matrix (Borgatti and Everett, 1997)—
are best thought of as low-dimensional representations of the (other mode’s) degree-normalized similarity network
across people and groups. People with similar values in 𝑆𝑝—such as [𝑂𝑙𝑖𝑣𝑖𝑎, 𝐹 𝑙𝑜𝑟𝑎], [𝐾𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑒, 𝑆𝑦𝑙𝑣𝑖𝑎,𝑁𝑜𝑟𝑎],
[𝐷𝑜𝑟𝑜𝑡ℎ𝑦, 𝑉 𝑒𝑟𝑛𝑒], and [𝐵𝑟𝑒𝑛𝑑𝑎, 𝐿𝑎𝑢𝑟𝑎, 𝐸𝑣𝑒𝑙𝑦𝑛]— appear closer in the correspondence plot (and are assigned to the
same cluster by the k-means algorithm). The same goes for events, those with similar values in𝑆𝑔—such as [𝐸13, 𝐸14]
and [𝐸1, 𝐸2, 𝐸3]—appear closer in the correspondence plot, while those with dissimilar values are placed far apart.
The distances between same-mode entities in the correspondence plot will thus be a function of their (inverse) degree-
normalized similarity.

Note that this differs from the usual interpretation of the CA correspondence plot, which is usually taken to bring
together nodes with “similar” connectivity patterns, where similarity is presumed to be a function of their raw row
profiles (for people) or column profiles (for groups). This interpretation implies (for instance) that two people who
attend many of the same events or two groups with many members will appear close in the plot. But this (still common)
interpretation is off the mark. What the CA correspondence plot distance captures is, instead, people and groups that
are surprisingly similar (e.g., from the point of view of a suitable null model, like independence) after taking people’s
activity levels and the sizes of the groups they belong to into account.7 Thus, people who share memberships in small
groups will be closer in the diagram than people who share memberships in big groups. In the same way, groups
that share people with few memberships will be closer in the diagram than those sharing people with many other
memberships.
4.5. One-Mode Projection Matrix and Eigevenctor Plot

This ambiguity in interpretation may stem from the fact that CA is usually seen as a technique to generate a plot that
provides a “low-dimensional approximation to the input data” (Faust, 2005, 125), where the “input data” is presumed
to be the original affiliation matrix 𝐀. But as we have seen, this is not what CA is designed to do. Instead, CA is meant
to provide a low-dimensional approximation of a transformed version of the input data, where the transformation is
meant to adjust for people’s activity levels and group sizes. Notably, if a low-dimensional representation of the original
“input data” (𝐀) is what we are after, this may be more closely approximated by the first two eigenvectors of the usual
one-mode projections of the matrix (where the first is, of course, the standard Bonacich dual centrality score).

To illustrate, Figures 6(a) and 6(b) shows the “raw” (unweighted by other-mode degree) similarity scores for persons
(𝑎𝑝𝑝′ = ∑

𝑔 𝑎𝑝𝑔𝑎𝑝′𝑔) and groups (𝑎𝑔𝑔′ = ∑

𝑝 𝑎𝑝𝑔𝑎𝑝𝑔′ ), with the rows and columns sorted by the first eigenvector of the
matrix, which is the usual Bonacich centrality score. Both similarity matrices reproduce the triangular, core-periphery
structure we observed in the re-ordered affiliation matrix in Figure 3(b). Figure 6(c) plots 𝐶𝐵 on the x-axis against
the second eigenvector of the unweighted similarity matrix—a relatively unusual but not substantively unmotivated
practice (Iacobucci, McBride and Popovich, 2017).8 We can see that the plot of the first two eigenvectors does a
good job of recovering the raw connectivity structure of the Southern Women affiliation network, partitioning the core
persons and groups (on the upper-right) from the more peripheral ones (on the lower-left).

Moreover, if all we are interested in is capturing a low-dimensional representation of which people have particular
affinities for which events (regardless of people’s activity levels or group sizes), then Figure 6(c) does a better job of
that than the usual CA correspondence plot in Figure 5(c). For instance, [𝐹 𝑙𝑜𝑟𝑎, 𝑂𝑙𝑖𝑣𝑖𝑎] do have a special affinity for
[𝐸11] and [𝑁𝑜𝑟𝑎,𝐾𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑒, 𝑆𝑦𝑙𝑣𝑖𝑎] for [𝐸10, 𝐸12]. In the same way, core events like [𝐸8, 𝐸9, 𝐸10]—shown on
the lower half of the plot—are different from core events [𝐸3, 𝐸4, 𝐸5, 𝐸6]—shown in the upper half. The former are
more inclusive of peripheral members while the latter are more “cliquish,” including only core members.

7Note that this, finding “surprising” similarities in terms of the indirect paths linking nodes in a network after the main effects of node-
connectivity are considered, is the same rationale given by Leicht, Holme and Newman (2006) for weighting the Katz (1953) similarity matrix
by the degrees of the corresponding nodes (see Fouss et al., 2016, 68, eqs. 2.13 and 2.14). As we have seen, this is precisely the key contrast between
the Bonacich and the CA dual centrality measures for two-mode networks.

8Nodes are colored to a four-cluster k-means solution using the first six eigenvectors of the respective similarity matrices.
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This “preferential attachment” (Barabási and Albert, 1999) of core people to core events and peripheral people
to peripheral events seems to be captured by the second dimension, left over after considering each node’s Bonacich
eigenvector centrality. For instance, [𝐸1, 𝐸2], although as poorly attended as other peripheral events, tends to include
core members and thus appear closer to other core actors in the upper half of the plot. Similarly, the main difference
between [𝑅𝑢𝑡ℎ] and [𝑆𝑦𝑙𝑣𝑖𝑎], despite their comparable 𝐶𝐵 scores, is that the former’s (closer to the upper half of the
plot) event profile is composed mainly of core events. In contrast, peripheral events dominate the latter’s attendance
profile (shown in the bottom half of the plot), accordingly, [𝑅𝑢𝑡ℎ] and [𝑆𝑦𝑙𝑣𝑖𝑎] are assigned to distinct clusters by the
k-means algorithm.
4.6. Correspondence Analysis and Generalized Relational Similarity

As noted, there seems to be a relationship between the ordering of persons and groups produced by CA of a two-
mode network and that produced by previous work using a “generalized relational similarity” (GRS) strategy. Recall
that for objects (let us say people) to be similar according to the GRS criterion, they must have overlapping connections,
and those links should go to objects in the other mode that are themselves similar, where objects’ similarities are given
by their pattern of connections to objects in the other mode. This recursive definition of similarity thus recalls the
classic distinction between structural and regular equivalence (Everett and Borgatti, 1994). In the context of two-mode
networks, Kovács (2010) proposed one such approach to defining a GRS for nodes in one and two-mode networks
using a modified version of the correlation distance.9

An earlier effort to define a GRS for persons and groups in two-mode networks, one more relevant for a direct
comparison with CA and the “reflective” approaches already considered, can be found in Jeh and Widom (2002). In
that work, the authors dubbed their similarity measure “SimRank.” In the context of two-mode network analysis, the
goal is to compute a matrix of similarities for each of the two-node sets, where the similarity of people is a function
of the groups they belong to, and the similarity of groups is a function of the people who belong to them, making the
similarity of persons and groups “mutually reinforcing notions” (Jeh and Widom, 2002, 540). Thus,

• People are similar if they belong to similar groups.
• Groups are similar if they share similar members.
Which is consistent with a GRS approach (see Kovács, 2010; Lizardo, 2024). To accomplish this, Jeh and Widom

(2002, 540, eq. 2 and eq. 3) propose that we define the similarity of each pair of people 𝑆(𝑝, 𝑝′) as given by:

𝑆(𝑝, 𝑝′) = 𝛼
𝐶𝑅(1)𝑝𝐶𝑅(1)𝑝′

𝐶𝑅(1)𝑝
∑

𝑖=1

𝐶𝑅(1)𝑝′
∑

𝑗=1
𝑆
(

𝑔(𝑖)𝑖∈𝑁(𝑝), 𝑔(𝑗)𝑗∈𝑁(𝑝′)
) (27)

Where everything is as before, and 𝑔(𝑖)𝑖∈𝑁(𝑝) is the 𝑖𝑡ℎ group in the set of groups that person 𝑝 belongs to, 𝑔(𝑗)𝑗∈𝑁(𝑝′)
is the 𝑗𝑡ℎ group in the set of groups that person 𝑝′ belongs to, and 𝛼 is a free parameter obeying the restriction: 0 > 𝛼 < 1.
By construction, 𝑆(𝑝, 𝑝) = 1, for all 𝑝. Thus, equation 27 says that the SimRank similarity between two people is a
function of the sum of the similarities of each unordered pair of groups they both belong to, weighted by the reciprocal
of the products of their number of memberships multiplied by 𝛼.

Likewise, for groups, the SimRank similarities are given by:

𝑆(𝑔, 𝑔′) = 𝛼
𝐶𝑅(1)𝑔𝐶𝑅(1)𝑔′

𝐶𝑅(1)𝑔
∑

𝑖=1

𝐶𝑅(1)𝑔′
∑

𝑗=1
𝑆
(

𝑝(𝑖)𝑖∈𝑁(𝑔), 𝑝(𝑗)𝑗∈𝑁(𝑔′)
) (28)

Where 𝑝(𝑖)𝑖∈𝑁(𝑔) is the 𝑖𝑡ℎ person in the set of members of group 𝑔, and 𝑝(𝑗)𝑗∈𝑁(𝑔′) is the 𝑗𝑡ℎ person in the set of
members of group 𝑔′, and 𝑆(𝑔, 𝑔) = 1. Thus, the SimRank similarity between two groups is a function of the sum of
the similarities of each pair of people who belong to both groups, weighted by the reciprocal of the products of the
number of members of each group multiplied by 𝛼.

9Lizardo (2024) shows the connection between Kovacs’s idea of generalized relations similarity and the two-mode network projection.
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In two-mode networks, SimRank scores for each pair of nodes across the two sets can be estimated via a simple
algorithm, in which we first estimate 𝑆(𝑝, 𝑝′) in equation 27 using baseline values. Hence, only groups that two people
share contribute to the initial values of 𝑆(𝑝, 𝑝′) since only 𝑆(𝑔, 𝑔) > 0 at the outset. We then plug those values into
equation 28, then loop back to equation 27 with the resulting𝑆(𝑔, 𝑔′) values, and continue iterating until convergence—
generally achieved after five iterations (Jeh and Widom, 2002), which is confirmed here for the Southern Women data.

Note that equations 27 and 28 share a formal similarity with HH’s “method of reflections” discussed earlier, in
particular, the fact that both compute quantities based on nodes in the other mode averaged by the degree of nodes
in the focal mode. The key difference is that SimRank works directly with pairwise comparisons between node dyads
(Jeh and Widom, 2002). Nevertheless, this double weighting by degree should make us suspect that the results of the
SimRank similarity analysis would not be too far from those obtained via CA, given the mathematical equivalence of
CA and the method of reflections (Mealy et al., 2019; van Dam et al., 2021).

And indeed, they are not. Figure 7(a) shows the original affiliation matrix, this time with rows and columns re-
arranged according to the values of the main non-trivial eigenvector (corresponding to the second-largest eigenvalue) of
the SimRank similarity matrices—with 𝛼 set to 0.8—for the row and column nodes. Like in Figure 3(a), this reshuffling
reveals the block-diagonal structure separating the two communities of persons and groups revealed by CA, suggesting
that CA and SimRank uncover a similar underlying partitioning of the two-mode network’s community structure.

Figure 7(b) and Figure 7(d) show a plot similar to that shown in Figures 4(a) and Figure 4(b) but this time with
the main eigenvector of SimRank similarity matrices of both persons and groups on the x-axis and the corresponding
rank on the y-axis. Looking at the plots from left to right, we can see that the partitioning of the node sets on the first
informative eigenvector is substantively equivalent to those revealed by the first CA eigenvector, separating similar
blocks of people and events.

Figure 7(f) shows the correspondence plot of the first and second eigenvectors of the SimRank similarity
matrices for both persons and groups. Once again, this plot is substantively equivalent (in terms of the internode
groupings and distances) to that shown in Figure 5(c), suggesting that the first-CA dimensions of the two-mode
network recover clusters of “similar” entities in the two node sets, where internode similarity is a generalized
relational similarity as defined earlier. Thus, [𝐹 𝑙𝑜𝑟𝑎, 𝑂𝑙𝑖𝑣𝑖𝑎] appear close because they choose similar groups, as
do [𝑆𝑦𝑙𝑣𝑖𝑎, 𝐾𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑒,𝐻𝑒𝑙𝑒𝑛]. In the same way, groups [𝐸9, 𝐸11] are close in the plot because they are chosen
by similar people, as are events [𝐸10, 𝐸12, 𝐸13, 𝐸14]. Figures 7(g) and (h) show a regression plot of the first CA
eigenvector for persons (top) and groups (bottom) on the x-axis and the first eigenvector of the SimRank similarity
matrix for both persons and groups on the y-axis. As we can see, the CA and SimRank ordering of nodes along the first
dimension agree quite closely (𝑟 = 0.98 for persons and 𝑟 = 0.99 for groups), confirming that these first eigenvectors
capture the same (GSR) information across the two approaches.

5. Discussion and Concluding Remarks
This paper reconsiders the role of CA in the analysis of two-mode network data. We began with an accidental

“rediscovery” of CA in the analysis of two-mode networks via a “reflective” approach (Hidalgo and Hausmann, 2009),
showing that the method of reflections leads to an eigenvector-style solution that is equivalent to simple CA of the
affiliation matrix. Working backward from this, we also clarified the linkages between CA and the more commonly
used eigenvector approach for calculating dual centralities in two-mode data due to Bonacich (1991). I showed that
just like the reflective centralities that converge to the CA scores of the affiliation matrix, we could also think of the
Bonacich centralities as the equilibrium solution to reflective iterations through the two-mode matrix, with the main
difference being that the CA reflections deal with sums of averages weighted by the degrees of nodes in each mode,
while the Bonacich approach works with unweighted (but normalized) sums. This exercise clarifies the links between
CA and the dual two-mode eigenvector centrality in a more coherent and systematic way, an issue that was left open
and somewhat unclear in Bonacich’s (1991) classic paper. Thus, one conclusion that emerges from this analysis is that
CA computes a kind of centrality for two-mode networks, equivalent to Hidalgo and Hausman’s “reflective” centrality
(van Dam et al., 2021).

But CA does more than reveal a latent dual ordering of nodes in the two-mode network. In addition to doing this,
CA can be shown to reveal groupings of nodes based on some conception of the similarity of their connections to
nodes in the other mode. This is evident once we use the scores of the first CA dimension to re-order the rows and
columns of the original affiliation matrix. When the CA scores are used, a clear (and now well-known) dual partition
between persons and groups emerges in the classic Southern Women data. This partition is substantively distinct from
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that which would emerge if we use the same approach to re-ordering the original data using the Bonacich centralities,
which instead uncover a latent core-periphery partition between actors and events.

This is another way in which CA and the Bonacich dual centrality approach systematically differ; one is geared
to uncovering blocks of actors with similar connections to events in the other mode (and vice versa), while the other
reveals blocks of actors who are the most active and who attend the largest events. Both are, of course, legitimate ways
of analyzing the structure of a two-mode network. Still, they differ in terms of the structural patterns that they are
sensitive to, with the CA approach closer to a community partition where nodes that are surprisingly similar end up
in the same clusters—where “surprising” means similarity based on deviations from a suitable null model based on
random mixing given their first-order degrees.

But what kind of similarity is the clustering based on the CA of the two-mode network sensitive to? Here we
argued that CA recovers a type of generalized relational similarity (GRS). That is, actors who have similar patterns of
linkage to similar events are deemed similar, while events that have similar patterns of connectivity to similar actors
are also deemed similar. Using a well-known iterative method to recover such generalized similarities from two-mode
networks (Jeh and Widom, 2002), we saw that the scores from the first dimension of CA end up being a fairly accurate
approximation to the resulting partition from the generalized relational similarity approach. Thus, we can clarify that
two-mode network CA reveals latent groupings of nodes based on a GRS criterion.

Overall, the preceding has shown that CA can be upgraded from a method designed to generate joint plots and
visualization of two-mode data to one that can be seen as more “central” to the usual social-network-analytic tasks,
like ordering the nodes in the two sets according to some substantively meaningful rank—centrality analysis—or
finding sets of similar actors in the network (subgroup or community detection). At the very least, it seems like the
Bonacich style dual centrality based on the eigenvector decomposition of the raw affiliation matrix should not be the
default “reflective” centrality approach unless the analyst has the explicit analytic goal of exploring center-periphery
partitioning in the network.

A better approach, similar to the one exemplified here, would be to present a comparison of the reflective centralities
obtained by CA and Bonacich side-by-side to see whether the underlying display a substantively interesting similarity
partitioning in addition to any core-periphery ordering. Of course, suppose the analyst is more interested in such a
“subgroup” analytic approach. In that case, the Bonacich dual centrality approach is less helpful (even if multiple
dimensions are considered), and CA should be the first line of attack.
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(a) CA Similarity plot (Persons). (b) CA Similarity plot (Groups).

(c) CA correspondence plot.
Figure 5: CA similarity plots for persons (a) and groups (b) on the left and right top panel. The bottom panel (c) shows
the correspondence plot for persons and groups with scores corresponding to the first dimension on the horizontal axis and
scores corresponding to the second dimension on the vertical axis.
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(a) Bonacich Similarity plot (Persons). (b) Bonacich Similarity plot (Groups).

(c) Bonacich correspondence plot.
Figure 6: Bonacich dual centrality similarity plots for persons (a) and groups (b) on the left and right top panel. The bottom
panel (c) shows the Bonacich eigenvector centrality correspondence plot for persons and groups with scores corresponding
to the standard Bonacich eigenvector centrality on the horizontal axis and scores corresponding to the second largest
eigenvector of the affiliation matrix on the vertical axis.
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(a) Re-ordered Affiliation Matrix (SimRank). (b) SimRank Eigenvector Plot (Persons). (c) SimRank Eigenvector Plot (Groups).

(d) SimRank Correspondence Plot (e) SimRank/CA Correlation.
Figure 7: Simrank versus CA comparison. Panel (a) shows the affiliation matrix re-ordered according to the first eigenvector
of the SVD of the SimRank similarity matrix. Panels (b) and (c) show the corresponding eigenvector and eigenvalue plots
for persons and groups, respectively, of the SimRank similarity matrix. Panel (d) shows the correspondence plot based on
the eigenvector decomposition of the first two non-trivial eigenvectors of the SimRank similarity matrix. Panel (e) shows
the Pearson correlation between the scores corresponding to the first eigenvector of the SimRank similarity matrix (on the
y-axis) and the scores corresponding to the first CA dimension (on the x-axis) for persons (top) and groups (bottom).
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